Media Partners

  • Scientific American

Send us your stories

The Quantum Shorts competition is back! Our annual celebration of quantum-inspired creative works returns with a call for flash fiction. You have from now until 1st December 2017 to send us a story up to 1000 words long. We challenge you to open your imagination to the strange ways of quantum particles and anticipate a new era of quantum technology (check our A-Z guide to get started).

A hundred years ago you might have hammered out your story on a typewriter. Today, an AI might be taking your dictation. How might the quantum future look?

This year, as well as telling us a story that draws on the ideas or themes of quantum physics, you must also include the phrase "There are only two possibilities: yes or no". That's a line from the 2015 People's Choice Winner. Before you get started, you can read all the past winners in our featured stories. Then get on with your writing for a chance to win prizes of up to US$1500 and digital subscriptions to Scientific American magazine! You don't want to miss our 1st December deadline.

Entries

By Judy Helfrich
October 16, 2017
5
Histories are made to be hacked
By Ben Boyd, Jr.
October 13, 2017
1
The singletary has chosen an Adam and an Eve
By Nick Bruechle
October 13, 2017
3.5
If you’re looking for commitment, a wave function is the last place you should be...
By STEPHEN P SOTTONG
October 13, 2017
4.75
Blood, death and a violent awakening - and that's just for starters
By Stewart C Baker
October 12, 2017
3.666665
It's a ball game, not a blame game
By Lesley L. Smith
October 12, 2017
1.5
Latisha and Emma are on the graveyard shift at the accelerator when something weird appears
By Quantum Shorts
October 10, 2017
3.333335
It wasn't that Juana wanted her experiment to fail. She just wanted to have a soul
By Quantum Shorts
October 10, 2017
3
Gran died on a Wednesday, but lucky for us she was back within a week

Never miss the news

We'll be sending regular email updates during the competition. Sign up here if you'd like to receive them. You'll hear about new quantum discoveries, our mini-competitions and people's entries to the contest. We won't share your email address with anyone else and you can unsubscribe anytime. 

Scientific Partners

Quantum Theory: A to Z

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

Judge Spotlight

Greg Dick

Greg is the Director of Educational Outreach at Canada's Perimeter Institute for Theoretical Physics. Greg's team delivers outreach programming across Canada and internationally that includes coast to coast television broadcasts, large scale science festivals, and an educational program that reaches one million students each year. Greg is an Advisory Board member on Canada's Science and Technology Awareness Network, the Canadian Science and Engineering Hall of Fame Selection Committee and on the Laurier Center for Women in Science as part of his commitment to scientific outreach. Prior to leading the Outreach team, Greg was the Science Chair at Galt Collegiate Institute where he taught high school physics for 16 years. He is a passionate advocate of scientific literacy.

Latest Tweets

  • 7 hours ago The numbers that describe our Universe are about to be 'revamped' https://t.co/B8Vf6quMIL
  • 21 hours ago Use intellect and emotion. Here's great advice from @bgreene. We are honoured to have him be a #quantumshorts judge… https://t.co/lmRfIQ18ps
  • 1 day ago B is for Bell's theorem. Is quantum theory a true reflection of our universe? Read more here: https://t.co/WrY9b55BRP
  • 3 days ago Looking for inspiration? Here is a place to start! A is for Act of observation… https://t.co/N4QQf0vLCy
  • 3 days ago RT @scifri: Need a break from the real world? Crack open one of these sci-fi books recommended by SciFri staff: https://t.co/yILk7lVpkg htt…